021-91014618

محاسبات نورومورفیک: رویکردها و مزایا

نورومورفیک

محاسبات نوآورانه (Neuromorphic Computing) نوعی محاسبات است که از ساختار و عملکرد مغز انسان الهام می‌گیرد. این فناوری شامل ساخت سیستم‌های کامپیوتری است که از مدارهای الکترونیکی برای شبیه‌سازی ارتباط نورون‌های مغز با یکدیگر استفاده می‌کنند. هدف اصلی محاسبات نوآورانه ایجاد سیستم‌های بسیار کارآمد است که مانند مغز انسان، قادر به یادگیری داده‌های جدید در زمان واقعی باشند و با آنها سازگاری یابند.

محاسبات نورومورفیک دارای چندین کاربرد بالقوه از جمله رباتیک، بینش کامپیوتری و پردازش زبان طبیعی است. با تقلید از نحوه پردازش اطلاعات توسط مغز، سیستم های نورومورفیک می توانند کارایی و دقت بالاتری نسبت به سیستم های محاسباتی سنتی داشته باشند. با این حال، هنوز چالش‌های زیادی در توسعه سیستم‌های نورومورفیک عملی وجود دارد، مانند طراحی الگوریتم‌های کارآمد و معماری‌های سخت‌افزاری و توسعه روش‌های آموزشی موثر برای شبکه‌های عصبی Spiking.

انواع رویکردهای به محاسبات نورومورفیک (Neuromorphic Computing)

چندین رویکرد برای محاسبات نورومورفیک وجود دارد که هر کدام دارای نقاط قوت و ضعف هستند. در اینجا چند مورد از رایج ترین رویکردها را به اختصار معرفی می کنیم:

۱- شبکه های عصبی Spiking (SNN)

همانطور که قبلا ذکر کردم، SNN ها بر اساس نحوه ارتباط نورون های مغز با استفاده از تکانه های الکتریکی مدل می شوند. SNN ها به جای سیگنال های آنالوگ پیوسته که در شبکه های عصبی سنتی استفاده می شوند، از spike ها برای نمایش اطلاعات استفاده می کنند. این رویکرد به ویژه برای کارهایی که نیاز به پردازش زمانی دارند، مانند تشخیص گفتار یا طبقه بندی تصویر، مناسب است.

۲- محاسبات نورومورفیک دیجیتال

این رویکرد از مدارهای دیجیتالی برای شبیه سازی رفتار نورون ها و سیناپس ها استفاده می کند. سیستم‌های نورومورفیک دیجیتال را می‌توان با استفاده از مدارهای منطق دیجیتال استاندارد پیاده‌سازی کرد که طراحی و ساخت آنها را نسبتاً آسان می‌کند. با این حال، سیستم های عصبی آنالوگ یا سیگنال مختلط ممکن است به اندازه کافی کارآمد نباشند.

۳- محاسبات نورومورفیک آنالوگ

این رویکرد از مدارهای آنالوگ برای شبیه سازی رفتار نورون ها و سیناپس ها استفاده می کند. مدارهای آنالوگ می توانند از نظر انرژی بسیار کارآمد باشند، که آنها را برای کاربردهایی که نیاز به مصرف برق کم دارند مناسب می کند. با این حال، طراحی و ساخت مدارهای آنالوگ ممکن است دشوار باشد و ممکن است بیشتر مستعد نویز و سایر منابع خطا باشند.

۴- محاسبات نورومورفیک سیگنال مختلط

این رویکرد مدارهای آنالوگ و دیجیتال را برای ایجاد یک سیستم ترکیبی ترکیب می کند که می تواند از نقاط قوت هر دو رویکرد استفاده کند. به عنوان مثال، مدارهای آنالوگ ممکن است برای شبیه سازی رفتار نورون ها استفاده شوند، در حالی که مدارهای دیجیتال برای محاسبات و ارتباطات استفاده می شوند.

مزایای محاسبات نورومورفیک (Neuromorphic Computing)

محاسبات نورومورفیک پتانسیل ارائه مزایای زیادی در زمینه ها و کاربردهای مختلف را دارد. در اینجا به برخی از آنها اشاره می کنیم:

۱- بهره وری انرژی

محاسبات نورومورفیک می تواند نسبت به محاسبات سنتی از نظر انرژی کارآمدتر باشد، به ویژه برای کارهایی که نیاز به مصرف انرژی کم دارند. این به این دلیل است که سیستم‌های نورومورفیک برای تقلید از نحوه پردازش اطلاعات توسط مغز طراحی شده‌اند. این محاسبات بصورت موازی و توزیع شده انجام میشوند و می توانند با استفاده از سخت افزارهای تخصصی به طور موثر اجرا شوند.

۲- پردازش بلادرنگ

سیستم‌های نورومورفیک می‌توانند داده‌ها را بلافاصله پردازش کنند. این ویژگی آنها را برای برنامه‌هایی که نیاز به پردازش بدون تاخیر دارند، مناسب می‌سازد. برخی از نمونه های پردازش بلادرنگ را در رباتیک، وسایل نقلیه هوشمند و سیستم های کنترل بلادرنگ میتوان مشاهده کرد.

۳- سازگاری

سیستم‌های نورومورفیک می‌توانند با داده‌ها و موقعیت‌های جدید بلافاصله سازگار شوند. این ویژگی آنها را برای برنامه‌هایی که نیاز به یادگیری و سازگاری دارند، مانند پردازش زبان طبیعی، بینش رایانه و تشخیص گفتار، مناسب می‌سازد.

۴- ثبات

سیستم‌های نورومورفیک می‌توانند در برابر نویز و سایر منابع خطا بسیار مقاوم باشند. این ویزگی آنها را برای کاربردهایی که به قابلیت اطمینان بالا و ایمن در برابر خطا نیاز دارند، مناسب می‌سازد.

۵- محاسبات الهام گرفته از مغز انسان

محاسبات نوآورانه الهام گرفته شده از ساختار و عملکرد مغز انسان می‌تواند به دستیابی به بینش‌ها و درک جدیدی از نحوه کارکرد مغز و رویکردهای بالقوه جدید برای حل مشکلات در علوم اعصاب و زمینه‌های مرتبط منجر شود.

به طور کلی، مزایای بالقوه محاسبات نوآورانه بسیار زیاد و متنوع هستند و می‌توانند در گستره وسیعی از برنامه‌ها و زمینه‌ها تأثیر قابل توجهی داشته باشند. با این حال، هنوز چالش‌های زیادی در توسعه عملی سیستم‌های نوآورانه وجود دارد که باید با آن‌ها مقابله شود. در واقع، تحقیقات و توسعه بیشتری در این زمینه نیاز است.

نمونه ای از یک برنامه کاربردی در دنیای واقعی

یک نمونه از یک برنامه کاربردی در دنیای واقعی که از محاسبات نوآورانه استفاده می‌کند، در زمینه رباتیک است. با استفاده از سیستم‌های نوآورانه، می‌توان ربات‌هایی ایجاد کرد که در مصرف انرژی کمتر، سازگارتر و پاسخگوتر نسبت به محیط خود باشند.

به عنوان مثال، محققان دانشگاه زوریخ یک ربات نوآورانه به نام “Nerf” ساخته‌اند که از یک شبکه عصبی Spiking برای پردازش اطلاعات حسی و کنترل حرکات استفاده می‌کند. این ربات دارای بدنه انعطاف‌پذیر و نرم است که به آن اجازه می‌دهد در محیط‌های پیچیده حرکت کند و با اشیا به روشی شبیه به انسان ارتباط برقرار کند.

مثال دیگر سیستم “SpiNNaker” است که به واقع یک پلتفرم محاسباتی نوآورانه در مقیاس بزرگ است و توسط محققان در بریتانیا توسعه یافته است. این سیستم از یک تراشه سفارشی طراحی شده تشکیل شده است و قادر است رفتار تا یک میلیارد نورون را بلافاصله شبیه‌سازی کند. از این سیستم برای مطالعه رفتار مدارهای عصبی در مغز و توسعه الگوریتم‌های جدید برای یادگیری ماشین و بینایی کامپیوتر استفاده می‌شود.

به طور کلی، این مثال‌ها قدرت محاسبات نوآورانه را برای ایجاد سیستم‌های هوشمندتر و سازگارتر و پیشبرد درک ما از مغز و عملکردهای آن نشان می‌دهند.

 

تفاوت بین محاسبات نورومورفیک و محاسبات سنتی

محاسبات نورومورفیک از چندین جهت اساسی با محاسبات سنتی متفاوت است، از جمله:

۱- معماری

معماری یک سیستم محاسباتی به طراحی کلی سیستم، از جمله اجزای سخت‌افزاری و نرم‌افزاری آن و نحوه سازماندهی و به‌هم پیوستگی آنها، اشاره می‌کند. محاسبات نورومورفیک معماری متفاوتی نسبت به محاسبات سنتی دارد که برای تقلید از رفتار نورون‌ها و سیناپس‌ها در مغز طراحی شده است.

در محاسبات سنتی، معماری معمولاً شامل یک واحد پردازش مرکزی (CPU) یا واحد پردازش گرافیکی (GPU) است که دستورالعمل‌های ارائه شده توسط برنامه‌های نرم‌افزاری را اجرا می‌کند. CPU یا GPU به دستگاه‌های حافظه و ذخیره‌سازی و دستگاه‌های ورودی و خروجی مانند صفحه کلید، موس و نمایشگر متصل می‌شوند.

در مقابل، محاسبات نورومورفیک از نوع متفاوتی از معماری استفاده می‌کند که برای تقلید از ساختار و عملکرد مغز طراحی شده است. سیستم‌های نورومورفیک معمولاً از اجزای سخت‌افزاری ویژه‌ای تشکیل شده‌اند که برای شبیه‌سازی رفتار نورون‌ها و سیناپس‌ها طراحی شده‌اند.

اجزای سخت‌افزاری یک سیستم نورومورفیک ممکن است شامل تراشه‌های طراحی‌شده سفارشی یا آرایه‌های دروازه‌ای قابل برنامه‌ریزی میدانی (FPGA) باشد که برای محاسبات شبکه عصبی بهینه شده‌اند. این تراشه‌ها و FPGAها ممکن است در یک شبکه یا آرایه سازماندهی شوند که ساختار مغز را تقلید می‌کند، با نورون‌ها و سیناپس‌ها که به شیوه‌ای بسیار پراکنده و موازی با یکدیگر ارتباط برقرار می‌کنند.

اجزای نرم‌افزاری یک سیستم نورومورفیک ممکن است شامل ابزارها و کتابخانه‌هایی باشد که برای آموزش و راه‌اندازی شبکه‌های عصبی اسپکینگ استفاده می‌شوند. آنها همچنین شامل مدل های برنامه نویسی هستند که برای اجرا بر روی سخت افزارهای تخصصی طراحی شده اند. این اجزای نرم افزار ممکن است با مدل های برنامه نویسی سنتی مورد استفاده در محاسبات سنتی متفاوت باشد. دلیل این امر این است که آنها برای کار بر روی شبکه های عصبی اسپکینگ به جای الگوریتم های سنتی طراحی شده اند.

۲- محاسبات

محاسبات در Neuromorphic Computing در اصل از چندین جهت با محاسبات سنتی متفاوت است. محاسبات سنتی بر اساس الگوریتم‌هایی است که انسان‌ها برای انجام وظایف خاص برنامه‌ریزی می‌کنند. در مقابل، محاسبات نورومورفیک از شبکه‌های عصبی Spiking استفاده می‌کند که با استفاده از داده‌ها آموزش دیده‌اند تا وظایف مختلفی از جمله تشخیص الگو، پردازش تصویر و کنترل را انجام دهند.

شبکه‌های عصبی Spiking برای تقلید از رفتار نورون‌ها و سیناپس‌ها در مغز طراحی شده‌اند. آنها از تعداد زیادی گره به هم پیوسته تشکیل شده‌اند که هر کدام نشان‌دهنده یک نورون هستند. این گره‌ها با استفاده از سیگنال‌های الکتریکی که از طریق سیناپس‌ها منتقل می‌شوند، با یکدیگر ارتباط برقرار می‌کنند.

در مقایسه با محاسبات سنتی، محاسبات در شبکه‌های عصبی Spiking بسیار موازی و توزیع شده است و بسیاری از نورون‌ها و سیناپس‌ها به طور همزمان با هم ارتباط برقرار می‌کنند. این ویژگی به شبکه‌های عصبی Spiking اجازه می‌دهد تا به سطوح کارایی بالایی برسند و بدون تاخیر بر اساس داده‌هایی که دریافت می‌کنند، سازگار شوند و یاد بگیرند.

۳- مصرف انرژی

مصرف انرژی یک نکته حیاتی در سیستم‌های محاسباتی است، زیرا به طور مستقیم با هزینه سیستم و تأثیر زیست محیطی آن در ارتباط است. محاسبات نورومورفیک اغلب از نظر انرژی بهبود یافته نسبت به محاسبات سنتی هستند، زیرا برای تقلید از ارتباطات نورون‌های مغز، از نورون‌های کارآمد انرژی طراحی شده‌اند.

در سیستم‌های محاسباتی سنتی، بیشتر عملیات‌ها با استفاده از سیگنال‌های آنالوگ پیوسته انجام می‌شوند که مصرف انرژی قابل توجهی دارند. در مقابل، محاسبات نورومورفیک از شبکه‌های عصبی spiking استفاده می‌کند که با استفاده از پالس‌های الکتریکی یا اسپایک‌های جداگانه ارتباط برقرار می‌کنند. این ویژگی به سیستم‌های نورومورفیک اجازه می‌دهد تا به سطوح بالا عملکرد دست یابند و در عین حال از توان کمتری نسبت به سیستم‌های محاسباتی سنتی استفاده کنند.

سیستم‌های نورومورفیک معمولاً به گونه‌ای طراحی می‌شوند که در بسیاری از جنبه‌ها کارآمد انرژی باشند. ابتدا، سخت‌افزارهای ویژه مورد استفاده در سیستم‌های نورومورفیک عموماً برای مصرف کمتر انرژی نسبت به CPUها و GPUهای سنتی طراحی می‌شوند. این مزیت می‌تواند از طریق روش‌های مختلف به دست آید، مانند کاهش اندازه ترانزیستورها یا استفاده از طرح‌های مداری کارآمدتر.

۴- پردازش بلادرنگ

قدرت یک سیستم محاسباتی برای پردازش بلادرنگ، به معنی پاسخگویی سریع به ورودی و تولید خروجی در عرض چند میلی‌ثانیه یا کمتر است. محاسبات نورومورفیک به طور معمول برای پردازش بلادرنگ مناسب هستند و به طور خاص برای عملکرد موازی و توزیع شده طراحی شده‌اند.

در سیستم‌های محاسباتی سنتی، پردازش به صورت سریالی صورت می‌گیرد و در هر زمان تنها یک عملیات انجام می‌شود. این می‌تواند منجر به تاخیر قابل توجهی در پاسخگویی ورودی و خروجی سیستم شود. به‌علاوه، سیستم‌های نورومورفیک به گونه‌ای طراحی شده‌اند که به صورت موازی و توزیع شده عمل کنند و بسیاری از نورون‌ها و اتصالات آن‌ها به‌طور همزمان با هم ارتباط برقرار کنند. این ویژگی به سیستم‌های نورومورفیک اجازه می‌دهد تا ورودی را بلافاصله پردازش کرده و خروجی را بدون تأخیر قابل‌ملاحظه‌ای تولید کنند.

در حوزه‌هایی مانند روباتیک، وسایل نقلیه هوشمند و سیستم‌های کنترل بلادرنگ، پردازش بلادرنگ اهمیت ویژه‌ای دارد. در این کاربردها، سیستم محاسباتی باید بتواند به تغییرات محیط یا ورودی سنسورها بدون تاخیر پاسخ دهد. محاسبات نورومورفیک برای این کاربردها بسیار مناسب هستند زیرا قادرند داده‌ها را بلافاصله پردازش کنند و خروجی تولید کنند که به سرعت رفتار سیستم را کنترل می‌کند.

چالش‌ها در توسعه سیستم‌های نورومورفیک (Neuromorphic Systems)

چالش‌های مختلفی در توسعه سیستم‌های نورومورفیک وجود دارد، از جمله:

۱- طراحی سخت افزار

سیستم‌های نورومورفیک به سخت‌افزار تخصصی نیاز دارند که بتوانند رفتار شبکه‌های عصبی spiking را شبیه‌سازی کنند. طراحی و ساخت چنین سخت افزاری می تواند پیچیده باشد و اغلب نیاز به ساخت سفارشی دارد.

۲- توسعه نرم افزار

توسعه نرم‌افزار برای سیستم‌های نورومورفیک می‌تواند چالش برانگیز باشد، زیرا مدل‌های برنامه‌نویسی و الگوریتم‌های مورد استفاده برای آموزش و عملکرد شبکه‌های عصبی spiking می‌توانند کاملاً متفاوت از رویکردهای یادگیری ماشین سنتی باشند.

۳- روش های آموزشی

توسعه روش‌های آموزشی مؤثر برای شبکه‌های عصبی spiking می‌تواند چالش برانگیز باشد. برخلاف شبکه‌های عصبی سنتی، شبکه‌های عصبی spiking با استفاده از اسپایک‌های گسسته عمل می‌کنند که استفاده از تکنیک‌های بهینه‌سازی مبتنی بر گرادیان استاندارد را دشوارتر می‌کند.

۴- مقیاس پذیری

پوسته پوسته شدن سیستم های نورومورفیک به اندازه های بزرگتر می تواند چالش برانگیز باشد. دلیل آن این است که نیازهای سخت افزاری و نرم افزاری به طور تصاعدی با تعداد نورون ها و سیناپس ها افزایش می یابند.

۵- یکپارچه سازی با سیستم های موجود

ادغام سیستم‌های نورومورفیک با سیستم‌ها و زیرساخت‌های محاسباتی موجود می‌تواند چالش برانگیز باشد، به‌ویژه در مورد انتقال داده و ارتباط بین انواع مختلف سخت‌افزار و نرم‌افزار.

۶- نداشتن استاندارد

در حال حاضر هیچ استاندارد قابل قبولی برای سخت افزار، نرم افزار یا مدل های برنامه نویسی محاسبات نورومورفیک وجود ندارد. این امر اشتراک گذاری و بازتولید نتایج تحقیقات را در گروه ها و مؤسسات مختلف دشوار می کند.

به طور کلی، این چالش‌ها نیاز به تحقیق و توسعه مستمر در محاسبات نورومورفیک و همکاری و تلاش‌های استانداردسازی را در این زمینه برجسته می‌کنند.

آخرین نوشته ها

تماس با ما

 کرج، شاهین ویلا، بلوار امام خمینی ، خیابان نهم شرقی ، برج شاهین ،طبقه اول واحد2

 91014618

  info@shopingserver.net

با تلفن ثابت بدون پیش شماره قابل شماره گیری هست و در صورتی که با تلفن همراه قصد تماس گرفتن دارید از پیش شماره استان خود را اول شماره وارد نمایید.

smail faal

smail faal